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The authors demonstrate the multiwatt linearly polarized dual-wavelength operation in an opti-
cally pumped vertical-external-cavity surface-emitting laser by means of an intracavity tilted
Fabry-Perot etalon and a Brewster window. The sum frequency generation from the lithium triborate
crystal pumped by this laser confirms that these two wavelengths oscillate simultaneously. Over
30 dB side-mode suppression can be achieved at dual wavelengths with a spectral spacing of
2.1 nm. The output power is slightly reduced by the intracavity Fabry-Perot etalon and Brewster
window. © 2007 American Institute of Physics. �DOI: 10.1063/1.2735554�

Dual-wavelength lasers are required for a variety of ap-
plications. The attempt to achieve a dual-wavelength ��984
and �1042 nm� vertical-external-cavity surface-emitting la-
ser �VECSEL� was conducted recently.1 This laser is based
on a complicated design and a critical epitaxial growth of the
VECSEL chip. However, its lasing spectrum at each color
is a few nanometer wide and the laser also indicates
self-pulsation.

It is possible for a traditional VECSEL �Ref. 2� to simul-
taneously lase at dual wavelengths separated by a few na-
nometers. First, the quantum well gain spectra have a wide
bandwidth with a relatively flat peak. Second, the VECSEL
gain medium is inhomogeneously broadened due to the
electron-phonon interaction, the width and composition fluc-
tuations in multiquantum wells, as well as material defects.3

In addition, an external cavity of a few centimeters results in
very dense longitudinal modes. All of these result in low
longitudinal mode selectivity of the VECSEL; thus, high-
power VECSEL tends to oscillate in multilongitudinal modes
with an envelope of a few nanometers.4,5 Dynamically, stable
two-wavelength oscillation of a laser can occur when the
mode coupling between two wavelengths is weak.6,7 There-
fore, using a suitable intracavity filter, one may realize dual-
wavelength oscillation in a regular VECSEL.

In this letter, we proposed and demonstrated a linearly
polarized dual-wavelength VECSEL by means of a tilted in-
tracavity Fabry-Perot �FP� etalon and a Brewster window.
The proper free spectral range of the tilted étalon allows the
VECSEL to oscillate at two wavelengths simultaneously.

The VECSEL structure, designed for emission around
975 nm, was grown by metal-organic vapor phase epitaxy on

an undoped GaAs substrate. The active region consists of 14
InGaAs compressive strained quantum wells. Each quantum
well is 8 nm thick and surrounded by ��31 nm thick�
GaAsP strain compensation layers and AlGaAs pump-
absorbing barriers. The thickness and composition of the lay-
ers are optimized such that each quantum well is positioned
at an antinode of the cavity standing wave to provide reso-
nant periodic gain �RPG�. A high-reflectivity �R�99.9% �
distributed Bragg reflector �DBR� stack made of 25 pairs of
Al0.2Ga0.8As/AlAs is grown on the top of the active region.
In addition to the RPG active region and DBR stack, there
is a high aluminum concentration AlGaAs etch-stop layer
between the active region and the substrate to facilitate se-
lective chemical substrate removal. The epitaxial side of the
VECSEL wafer was mounted on chemical vapor deposited
diamond by indium solder. After the removal of the GaAs
substrate and etch-stop layer, a single layer Si3N4 �n=1.78 at
980 nm� quarter-wave low-reflection �LR� coating �for
975 nm signal� was deposited on the surface of the VECSEL
chip to achieve a reflectance of less than 1% at the signal
wavelength. Also, this coating significantly reduces the re-
flectance of 808 nm pump emission at the chip surface.

The experimental setup is shown in Fig. 1. A V-shaped
cavity which is folded at the VECSEL chip is used in the
experiment, allowing a double-pass through the gain region,
thus increasing efficiency.5 Unfolding the cavity about the
DBR mirror, one can view the active region of the VECSEL
chip as a tilted intracavity FP étalon. The previously men-
tioned LR coating reduces walk-off loss.8 The processed
VECSEL chip was mounted on a heat sink for temperature
control. The lasing experiment was conducted by using a
fiber coupled multimode 808 nm diode laser pump source. A
480 �m diameter pump spot was focused on the VECSELa�Electronic mail: lifan@optics.arizona.edu
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chip during the experiment. In the V-shaped cavity, the dis-
tance between the high-reflecting �HR� �R�99.9% at signal
wavelength� flat mirror and the chip is around 6 cm and the
distance between the chip and the output coupler �R�97% at
signal wavelength, 30 cm radius of curvature� is about
20.5 cm. The size of TEM00 mode on the VECSEL chip is
about 425 �m diameter, matching the pump spot size of
480 �m diameter. The cavity angle between two arms of the
V-shaped cavity is about 8°, resulting in the refraction angle
in the semiconductor to be less than 1.3°. Such a small
refraction angle does not significantly change the relative
confinement factor. Both a FP étalon and a Brewster window,
which are �150 �m thick uncoated commercial glass slides,
were inserted between the chip and the HR flat mirror to
achieve linearly polarized dual-wavelength VECSEL. By
scanning the glass slide in an expanded and collimated
He–Ne laser beam and monitoring the interference fringes on
a shear plate, we selected the desired area on the glass slide,
in which both sides of the glass slide are parallel and smooth.
This area was aligned in the cavity to cross the laser beam.
The free spectral range of the filter is about 0.67 THz �or
2.0 nm�.

The pump spot on the chip plays a role as an aperture.
Since the Gaussian beam suffers from the distortion intro-
duced by a tilted FP étalon,8 this distorted laser beam in
conjunction with the aperture causes more diffraction loss
due to the truncation of the aperture. In the experiment we
observed that inserting the étalon in the longer arm of the
V-shaped cavity causes lower efficiency of the laser �i.e.,
much more diffraction loss into the VECSEL� than placing
them in the short arm.

Figure 2 shows the lasing spectra with/without both the
intracavity tilted étalon and Brewster window. During the
measurement, the temperature of the heat sink was fixed at
10 °C. The lasing spectral intensity �in dBm� at 16.4 W
pump power is shown in Fig. 2�a�. Figures 2�b� and 2�c�
show the lasing spectral intensity �in dBm and linear scale,
respectively� at 26.5 W pump power. At these two pump
levels, without the étalon and Brewster window, the VEC-
SEL lasing spectra �black solid lines in Figs. 2�a� and 2�b��
are a few nanometer wide and shift with the increase of the
pump power. After the étalon and Brewster window were
inserted in the cavity, as illustrated in Fig. 1, the étalon was
properly tilted such that the spectral intensity of each color
was even and the total output power was optimized. The
dual-wavelength lasing spectra selected by the étalon �red
solid line in Figs. 2�a� and 2�b�� indicate over 30 dB side-
mode suppression. Additionally, the dual-wavelength lasing
spectra indicate similar redshift behavior as the unfiltered
lasing spectra. The dual-wavelength lasing spectrum �in lin-
ear scale� in Fig. 2�c� gives the linewidth �full width at half
maximum� of �0.5 nm for each color and the spectral spac-

ing of 2.1 nm. Due to the lack of a suitable grating to sepa-
rate these two wavelengths, we could not directly measure
the power of each wavelength. Since the spectral intensity is
even at two wavelengths, the power of each wavelength
should be close to each other. The penalty for using intrac-
avity components is the loss of laser efficiency. At 26.5 W
pumping, the output powers are 4.78 W �free lasing�, 4.5 W
�after inserting FP étalon�, and 3.98 W �after inserting both
FP étalon and Brewster window�, respectively. The intracav-
ity FP étalon and Brewster window only reduce the total
output power by 17% at this pump level.

To confirm that the VECSEL oscillates at these two
wavelengths simultaneously, we focused the collinear dual-
wavelength output into the type-I angle phase-matched
lithium triborate crystal, employed to generate tunable sec-
ond harmonic generation �SHG� around 488 nm,9 to generate
sum frequency generation �SFG�. Since the two wavelengths
��1 and �2� are only separated by 2.1 nm, the phase matching
angle for SFG of �1 and �2 is also close to that of SHG of �1
or �2. These three nonlinear conversion signals should be
observed. Figure 3 shows the SFG �central peak� as well as

FIG. 1. �Color online� Schematic diagram of a linearly polarized dual-
wavelength VECSEL with the V-shaped cavity, a Brewster window, and an
intracavity tilted FP étalon. Relative dimensions are not to scale.

FIG. 2. �Color online� Lasing spectra without/with a tilted intracavity FP
étalon �black/red solid line� at 16.4 W pump �a� and 26.5 W pump ��b� and
�c��.
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the SHG of each fundamental wavelength �side peaks, sepa-
rated by �1 nm�. The SFG signal confirms that these two
wavelengths lase simultaneously.

Some practical drawbacks of this linearly polarized dual-
wavelength VECSEL must be mentioned. The spectral inten-
sity at these two wavelengths is not always even. We
observed that each of these two spectral peaks in Fig. 2�c�
became dominant slowly and alternately due to the longitu-
dinal mode competition between them. Meanwhile, dual-
wavelength output power slowly fluctuated in the range of
±50 mW. Stabilizing this dual-wavelength operation is the
subject of ongoing work.

In summary, employing an intracavity tilted FP étalon
and a Brewster window is a simple and efficient method to
realize a linearly polarized, simultaneously dual-wavelength
oscillation in a traditional VECSEL. At multiple watts of
dual-wavelength VECSEL output, over 30 dB side-mode

suppression was demonstrated at two wavelengths, separated
by �2.1 nm. The loss of output power caused by the FP
étalon and Brewster window is less than 17%.
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